

Welcome to insin-notes!

Conferences

	JavaOne 2012

Ideas

	Twitter App: Substitute

Scratch

Scratch area for quick notes and half-formed thoughts.

	Dual-Sided JavaScript

	Shared JavaScript

	Extending The Sphinx JavaScript Domain

Indices and tables

	Index

	Module Index

	Search Page

JavaOne 2012

Tuesday, 2nd October 2012

	Meet The Nashorn Development Team BOF
	Notes

	Nashorn, Node.jar and Java Persistence BOF
	Node.jar, Akhil Arora

	JPA & Node.jar, Doug Clarke

Meet The Nashorn Development Team BOF

	URL: https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=4763

Notes

	No plans to open source Node.jar

	3 former Rhino developers on the Nashorn team

	...don’t have notes for the questions I asked, so imagine you’re reading
interesting implementation details here...

	Didn’t look at other JavaScript implementations during development to keep it
“pure”

	No optimisations are planned for the near future.

	New features
	Here strings

	Edit strings

	Shebangs

	Compatibility script for Rhino code

	Modules
	Node.jar implements Node’s module system

	No plans for Nashorn itself to commit to a module system yet

	Making heavy use of invokeDynamic

	Node implementation is not as fast as native Node, but already in the ballpark
and they think they can get there **Akhil sinks into his chair in the
audience :)**

	1 test left to reach 100% conformance with ECMA-262, ~8 bugs

	Not rushing it out the door - “we have time to get it right”

	Will be able to run under one of the smaller Jigsaw runtimes.

	Primary purpose is to enable scripting for Java, not to be some sort of
solution for JavaScript in general.

Nashorn, Node.jar and Java Persistence BOF

	URL: https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6661

Node.jar, Akhil Arora

	Nashorn

	Implemented Node’s evented APIs

	Using the Grizzly Framework under the hood (GlassFish)

	Can run on any Nashorn platform

	Including Java SE Embedded

	Node port will always be single-threaded/evented, but Java part can take
advantage of threads/multi-core

	Only on Java SE 7 and above

	JavaScript part is single-threaded, but Java portions can spin up as many as
you want. Have to post to the event queue to communicate back to Node.

	Access to BigDecimal/BigInteger on JVM (and others etc. etc.)

	Mapping from Node modules to Java APIs used in their implementation
(incomplete list)

	buffer
	Grizzly ByteBuffer (nio ByteBuffer)

	child_process
	ProcessBuilder

	dns
	InetAddress etc.

	fs
	nio.File

	http(s)
	Grizzly

	stream
	Grizzly nio Stream

Development

	WIP based on Node v0.8.2

	Reusing Node (JavaScript) source as much as possible

	Redirecting to Java APIs where required in _wrap implementation modules

	Using the Node.js unit tests to test

	Lists of modules which were “Mostly Working”, “Partial”, “TBD”, I only got
these ones down:

	TBD

	crypto, cluster, dns, readline, repl, tty, zlib

	Partial

	fs, http, net, os

Demos

Running on a Raspberry PI

	java -jar node-0.1.jar fortune.js
	Serving up a fortune entry

	dates.js
	Writing a date to the response every second, using Java Date

Q&A

	Speed?
	Not getting into it vs Mozilla and Google engines, but faster and smaller
than Rhino already.

	Can Node modules retrieved via npm be used?
	Yes, but can’t load modules which require native extensions

	Are there any plans to provide wrap modules for popular modules which have
native deps, like Socket.IO?
	Socket.IO support will be an add-on (i.e. later), wrapping Grizzly
implementations.

	Why, and why use JavaScript at all?
	Node API is compact and powerful, with smaller code size

	JavaScript is dynamic, reactive, fun!

	Make use of Java APIs

	Secured with Java security

JPA & Node.jar, Doug Clarke

Implementation details and JS code samples of 4 ways to use JPA persistence with
Nashorn/Node.jar.

Wrapped JPA, XML + annotated Java

	Access Java EE with SSJS

	Node wrapped JPA

	Annotated Java classes and XML config file

	app.js & jpa.js

Wrapped dynamic JPA

	Access Java EE with SSJS without Java

	No Java source classes

	Persistence XML

	EclipseLink offers dynamic persistence, spinning up classes at runtime
(access="VIRTUAL")

+----------------------+ +-------+ +-------+
Node.jar		Nashorn		Eclipse				
				Link				
+-------+ +-------+								
	app.js		jpa.js					
+-------+ +-------+								
+----------------------+ +-------+ +-------+

JS JPA & JS/JSON Config

	JavaScript object literals equivalent to XML config

	Factories required for creation of new objects, still early days on this
front.

+----------------------+ +-------+
Node.jar		Nashorn				
+-------+ +-------+						
	app.js		jpa.js			
+-------+ +-------+						
+----------------------+ +-------+

JS Database JPA

	Types and mappings from DB

	Types creted based on the schema

	Names mapped to database table names

	Use case for Nashorn/Node could be scripted service chunks leveraging EE
capabilities.

Q&A

	(Paraphrasing) Sample JS code is synchronous, WTF?
	Code put together to demonstrate use, not a JS API

	EntityManager can transparently be made asynchronous to support writing in
the standard Node async way.

	(Adam Bien) Can we do annotations?
	Not part of the JS language

	After this question there was a bit of discussion back and forth about ways
you could annotate, use cases for using EE components in JS, but it’s clear
that it’s possible to use chunks of EE with Node.jar and all the specifics are
up for grabs right now.

	It sounds like it’s hard to even get a hold of Node.jar if you work for Oracle,
and there are no plans to open source it.

	Which is a pity, because more people who know Node.js and use EE could be of
use here. I know I’d like to start playing with it yesterday!

Twitter App: Substitute

This is now a thing: http://github.com/insin/substitute

A Twitter [http://twitter.com] app for conveniently correcting typos.

In lieu of an edit button, correcting a typo on Twitter involves deleting the
original tweet and creating a new one. If you’re tweeting via the web interface,
this is annoying. If you’re tweeting via SMS or via a browser on a standard
mobile phone using m.twitter.com [http://m.twitter.com], this is more painful (first-world problems
definition) than it needs to be, as the typo must die.

Specification

The app should monitor your tweet timeline, looking for tweets matching the
following format:

s/this/that/

When a matching tweet is found, the app should:

	locate the previous tweet in your timeline,

	verify that it matches the first part of the replacement expression,

	perform the replacement and tweet it,

	delete both the original tweet and the tweet specifying the replacement.

Dual-Sided JavaScript

Research

	Scaling Isomorphic Javascript Code [http://blog.nodejitsu.com/scaling-isomorphic-javascript-code] - describes a
Resource-View-Presenter pattern for dual-sided code.

	The client-side templating throwdown: mustache, handlebars, dust.js, and more [http://engineering.linkedin.com/frontend/client-side-templating-throwdown-mustache-handlebars-dustjs-and-more]
- reusability is one of the criteria evaluated here.

Frameworks

	Derby [http://derbyjs.com] (GitHub [https://github.com/codeparty/derby])

	Flatiron [http://flatironjs.org] (GitHub [https://github.com/flatiron])

	Kanso [http://kan.so] (GitHub [https://github.com/kanso])

	Sacrum [https://github.com/insin/sacrum]

	Bones [https://github.com/developmentseed/bones]

Modules

Utilities

	isomorph [https://github.com/insin/isomorph]

Models / Data

	resourceful [https://github.com/flatiron/resourceful]

Routers / URL Mapping

	crossroads.js [https://github.com/millermedeiros/crossroads.js]

	director [https://github.com/flatiron/director]

	urlresolve [https://github.com/insin/urlresolve]

Templating

	DOMBuilder [https://github.com/insin/DOMBuilder]

	Dust [https://github.com/akdubya/dustjs]

	Jade [https://github.com/visionmedia/jade]

	Plates [https://github.com/flatiron/plates]

Validation

	newforms [https://github.com/insin/newforms]

	revalidator [https://github.com/flatiron/revalidator]

Shared JavaScript

module.exports Detection / Global Namespace Stuffing

This is what I’m currently do in my own shared modules - it’s inelegant
and I suspect makes it hard to share tests between Node.js and browsers
in anything but node-qunit, but I’m yet to confirm that by trying to port
any of the modules which use this pattern over to Mocha for testing.

Pros:

	Simple.

Cons:

	Ugly.

	Boilerplated.

	Requires dependents to require() into a specifically-named variable.

lib/<modulename>.js:

;(function(__global__, server) {

var dep = server ? require('dep') : __global__.dep

var api {}

// Define API

if (server) {
 module.exports = api
}
else {
 __global__.<modulename> = API
}

})(this, !!(module && typeof module.exports == 'function'))

Bundling Dependencies

Haven’t actually tried this yet, but it’s what I’d planned to do, calling
in the context of an Object which will receive exports.

<modulename>.js:

;(function() {

var __global__ = {}

;(function() {

// Source for namespace-stuffed dependencies

// Source for module who needs the above dependencies

}).call(__global__)

window.modulename = __global__.modulename

})()

Target End State

	Code everything using Node.js-style require().

	For dual-sided code which needs Node.js-only features, detect process, or
a similar Node.js global.

	Hack in Node shims only as required.

	Export for browsers:
	Implement require() for use in an IIFE, not available publicly - the
final API will still be exported as a property of window.

	Wrap code and dependencies with IIFEs which define module, exports
and require.

	Dirt simple - not automated - should be driven off a file telling it exactly
what to do. See Research section below for that. If you find yourself going
down or needing to go down that route, use one of those instead.

Simple test case:

/concur.js:

var is = require('isomorph/is')

function extend..
function mixin...
function inheritPrototype...
function inheritFrom...

var Concur = exports.Concur = function...
Concur.extendConstructor = function...

/node_modules/isomorph/is.js:

function isArray...
function isBoolean...
function isDate...
function isError...
function isFunction...
function isNumber...
function isObject...
function isRegExp...
function isString...
function isEmpty...

module.exports = {
 Array: isArray
, Boolean: isBoolean
, Date: isDate
, Empty: isEmpty
, Error: isError
, Function: isFunction
, NaN: isNaN
, Number: isNumber
, Object: isObject
, RegExp: isRegExp
, String: isString
}

Expected output (not tested, rough guesses):

;(function() {
 var modules = {}
 // Naive much?
 function require(name) {
 return modules[name]
 }
 // Doesn't handle exports = blah
 function defineModule(name, fn) {
 var module = {}
 , exports = {}
 module.exports = exports
 fn(module, exports, require)
 modules[path] = module.exports
 }

 defineModule('isomorph/is', function(module, exports, require) {
function isArray...
function isBoolean...
function isDate...
function isError...
function isFunction...
function isNumber...
function isObject...
function isRegExp...
function isString...
function isEmpty...
module.exports = {
 Array: isArray
, Boolean: isBoolean
, Date: isDate
, Empty: isEmpty
, Error: isError
, Function: isFunction
, NaN: isNaN
, Number: isNumber
, Object: isObject
, RegExp: isRegExp
, String: isString
}
 })

 defineModule('concur', function(module, exports, require) {
var is = require('isomorph/is')

function extend..
function mixin...
function inheritPrototype...
function inheritFrom...

var Concur = exports.Concur = function...
Concur.extendConstructor = function...
 })

 window['concur'] = require('concur')
})

Research

	https://github.com/substack/node-browserify of course!

	https://github.com/LearnBoost/browserbuild - specify what you need and it
handles relative stuff

	https://github.com/hij1nx/codesurgeon can be used to programmatically pick
scripts apart to remove bits you don’t want in the browser, rather than always
writing in a browser-compatible way or shimming.

	Example: https://github.com/flatiron/broadway/blob/master/bin/build

	https://github.com/visionmedia/mocha/tree/master/support

Mocha has a build script which provides a browser-side require() and
scans code being bundled for fixups for the browser, such as pointing at
at stubs and shims for Node modules (which are kept in the /browser/
dir) and modifying inheritance to work cross-browser.

It registers each file being bundled with its custom require by
filename, wrapping it in a function which provides module, exports
and require variables for the module to use.

Any browser-specific setup is performed after the module is required into
a global variable on window.

require() is a refactored version of:

	https://github.com/weepy/brequire/blob/master/browser/require.js

	https://github.com/tobie/modulr-node

	https://github.com/rpflorence/commonjs-rjs

	https://github.com/coolaj86/node-pakmanager - ruh-roh, wants to remove your
opt-in rights to strict mode

	https://github.com/azer/onejs - “transform commonjs packages into single,
stand-alone javascript files”

	https://github.com/medikoo/modules-webmake

	https://github.com/rolandpoulter/node_modulator

	http://caolanmcmahon.com/posts/writing_for_node_and_the_browser

	http://ender.no.de/

Extending The Sphinx JavaScript Domain

Notes exploring changes which could be made to the Sphinx [http://sphinx.pocoo.org] JavaScript domain
to take full account of JavaScript’s capabilities and object model.

[TODOs/TBDs are expressed in square brackets]

Current JavaScript Domain

The JavaScript domain (name js) currently provides the following
directives:

	
.. js:function:: name(signature)

	Describes a JavaScript function or method.

	
.. js:class:: name

	Describes a constructor that creates an object.

	
.. js:attribute:: object.name

	Describes the attribute name of object.

	
.. js:data:: name

	Describes a global variable or constant.

These roles are provided to refer to the described objects:

	
:js:func:

	
:js:class:

	
:js:data:

	
:js:attr:

	

Terminology

[Is there an set of single words, or two word phrases at a push, we
could agree to use to differentiate between properties of a constructor, a
prototype and an instance? The following are commonly used.]

	class

	[]

	prototype

	[]

	variable

	[]

	object

	[]

	function

	[]

	method

	[]

	instance

	[]

	static

	[]

	extends

	[]

	inherits

	[]

Necessary Capabilities

What are the full range of properties a JavaScript constructor, instances
created from it and regular Objects can have?

var data = 0

var object = {
 prop: 42
, func: function() {}
}

function Constructor(arg1) {
 this.instanceProperty1 = arg1
 this.instanceProperty2 = Array.prototype.slice.call(arguments, 1)
 this.instanceFunction = function() {}
}
Constructor.constructorFunction = function() {}
Constructor.constructorProperty = true
Constructor.prototype.prototypeFunction = function() {}
Constructor.prototype.prototypeProperty = 42

var instance = new Constructor('steve', 1, 2, 3)

Proposed JavaScript Domain

	
.. js:constructor:: name(signature)

	Describes a constructor that creates an object.

	The underlying implementation for :js:class:: is already called JSConstructor

	
	keep js:class as an alias?

	
.. js:prototype:: name

	Describes a constructor’s prototype.

	
.. js:object:: name

	An Object which contains... stuff.

	
.. js:function:: name(signature)

	Describes a JavaScript function.

When top level:

	name(signature)

	Top-level function

	constructor.name(signature)

	Constructor function – “static”

	constructor.prototype.name(signature)

	Prototype function – “method”

	object.name(signature)

	Object function – “static”

When nested under:

	constructor

	Prototype function – “method”

	prototype

	Prototype function – “method”

	object

	Object function – “static”

[What about functions attached directly to instances?]

	
.. js:property:: name

	Describes a property of an object.

[What does nesting mean?]

[Constructor “static” property vs. prototype property vs. instance property]

[More...]

Index

 J

J

 	
 	js:attr (role)

 	js:attribute (directive)

 	js:class (directive)

 	(role)

 	js:constructor (directive)

 	js:data (directive)

 	(role)

 	
 	js:func (role)

 	js:function (directive), [1]

 	js:object (directive)

 	js:property (directive)

 	js:prototype (directive)

 _static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/file.png

nav.xhtml

 Table of Contents

 		Welcome to insin-notes!

 		JavaOne 2012

 		Tuesday, 2nd October 2012

 		Meet The Nashorn Development Team BOF

 		Nashorn, Node.jar and Java Persistence BOF

 		Twitter App: Substitute

 		Specification

 		Dual-Sided JavaScript

 		Research

 		Frameworks

 		Modules

 		Utilities

 		Models / Data

 		Routers / URL Mapping

 		Templating

 		Validation

 		Shared JavaScript

 		module.exports Detection / Global Namespace Stuffing

 		Bundling Dependencies

 		Target End State

 		Research

 		Extending The Sphinx JavaScript Domain

 		Current JavaScript Domain

 		Terminology

 		Necessary Capabilities

 		Proposed JavaScript Domain

_static/comment-close.png

_static/up.png

